Hace treinta años, había más de veinte aviones civiles supersónicos surcando los cielos.
Hoy, no queda ninguno y no se prevé que vuelva a suceder pronto. ¿Por qué?

Siempre se dice que es por el dinero. Sin embargo, varias líneas supersónicas resultaron ser rentables, al menos marginalmente. British Airways, por ejemplo, le sacaba veinte millones de libras anuales a sus vuelos Londres-Nueva York y Londres-Barbados en Concorde; y se dice que al final recuperaron mil setecientos millones en total frente a una inversión de mil millones. Ya en 1984, algunos medios afirmaban que el avión supersónico anglo-francés había logrado romper la barrera del beneficio (aunque Air France no se enteró mucho).

Pero las ganancias intangibles en forma de prestigio, desarrollo de tecnologías avanzadas y oportunidades empresariales fueron mucho mayores: se puede decir que difícilmente Airbus habría salido adelante si el Concorde no hubiese despegado jamás (sobre todo teniendo en cuenta el fracaso del Mercure y la precaria situación política que rodeaba al A300 en aquellos momentos). Fue el Concorde quien demostró que la cooperación intereuropea podía funcionar y crear grandes innovaciones frente a gigantes como Boeing; su emblemática silueta surcando los cielos fascinó a millones de personas, atrayendo incontables clientes a las compañías que los operaban y elevada reputación a sus países durante muchos años.


El Tu-144, aún más ambicioso (entre otras cosas, volaba significativamente más rápido y podía llevar más carga, aunque con menor alcance), estuvo plagado de problemas que limitaron enormemente su operación comercial y finalmente lo conducirían a una temprana cancelación. Sin embargo, las tecnologías derivadas permitieron a la URSS el desarrollo de grandes aviones supersónicos militares como el bombardero nuclear estratégico Tu-160, así como un número de avances de gran interés para otros aparatos militares, lanzadores espaciales mejorados en su tramo atmosférico y distintos tipos de misiles aéreos. Por no mencionar su reutilización como laboratorio volante para Rusia y la NASA norteamericana.

Por otra parte, los aparatos civiles supersónicos también se cobraron algunas vidas: 113 en el caso del Concorde (el único desastre de toda su carrera) y 16 en los dos accidentes del Tu-144 (los siniestros del Tupolev ocurrieron durante un vuelo de pruebas y otro de exhibición, con lo que el número de víctimas fue reducido).


Cabe reseñar aquí un dato frecuentemente olvidado a la hora de evaluar sus posibilidades: tanto el Concorde como el Tu-144 representaban la primera generación de aviones comerciales supersónicos (y última por el momento). En mi opinión, juzgar al transporte comercial supersónico por los resultados de estas dos aeronaves se parece mucho a juzgar las posibilidades de los aviones a reacción por los resultados del De Havilland Comet o el Avro Jetliner: una tragedia y un fracaso, respectivamente. Si después del Comet y el Avro no hubieran llegado el Tupolev Tu-104 (el primer avión comercial a reacción con éxito) o el Boeing 707, quizá ahora mismo pensaríamos que eso de los aviones a reacción es un fiasco. Y si el Tupolev Tu-124 no hubiera demostrado la eficacia de los turboventiladores frente a los turborreactores para limitar el consumo de combustible, igual hoy estaban también todos retirados del servicio por insostenibles económica y ecológicamente.

Pero detrás del Tu-144 y del Concorde no vino nadie; y por tanto nunca hubo una segunda generación de aviones comerciales supersónicos que superara los problemas y limitaciones de la primera, abriendo así la posibilidad de reducir significativamente los costes operacionales. La URSS retiró del servicio activo al Tu-144 debido a sus deficiencias, mientras British Airways y Air France operaban su reducida flota de Concordes casi como una reliquia de otros tiempos; lo que por supuesto encarecía enormemente el mantenimiento, no permitía reducir el coste por economía de escala y no dejaba beneficios que pudieran ser reinvertidos en I+D para esta segunda generación.

Cabina de pasajeros del Tu-144 (izda.) y el Concorde (dcha.)


Los Estados Unidos, por su parte, ni siquiera lograron construir un transporte civil supersónico de ninguna clase, ni bueno ni malo: tras años de trabajo y unas inversiones económicas que casi acaban con Boeing (junto a otras cancelaciones), el B-2707 fue descartado en 1971 a pesar de que ya tenía 115 pedidos de 25 aerolíneas. Es la época del famoso cartel pagado por los sindicatos que decía “por favor, la última persona en Seattle, que apague la luz”, en referencia a la catástrofe que esta cancelación representaba para el mercado laboral local.

¿Y por qué nunca hubo una segunda generación?

Sólo el Reino Unido, Francia, la URSS y los Estados Unidos (estos últimos en el ámbito exclusivamente militar) han sido capaces de crear aeronaves supersónicas pesadas, lo que ya nos da una idea de la enormidad del problema al que nos enfrentamos. La construcción de esta clase de aviones es una labor extremadamente difícil que exige importantes inversiones económicas y un plazo de tiempo suficiente para cometer errores y corregirlos antes de prometer alguna rentabilidad. En el estancado estado actual de la tecnología necesaria y con un mercado potencial tan inmaduro, por tanto, el riesgo empresarial es muy alto. Demasiado para que se sientan cómodos los accionistas de las empresas privadas, hoy en día dominantes en las actividades creativas y productivas de una mayoría de países. Digamos que ninguna de esas agencias de calificación que fallan más que una escopeta de feria –excepto cuando se dedican al negocio de la profecía autocumplida– concedería a esta inversión alguna “A”.

Tanto el Concorde como el Tu-144 fueron proyectos esencialmente estatales o de financiación estatal, al igual que el vuelo espacial, la energía nuclear o los de exploración y ciencia muy avanzadas, por poner otros ejemplos. Para la empresa privada, es muy difícil –cuando no directamente inviable– realizar semejantes inversiones, correr tales riesgos y además con un plazo indeterminado de rentabilización; a menos, claro, que disponga de acceso extensivo al dinero de todos garantizado por el estado. Conforme los modelos económicos sustentados fundamentalmente en la iniciativa privada, el crédito y la reducción del gasto público fueron ganando terreno a lo largo de las últimas décadas, toda una serie de desarrollos científico-técnicos entre los que se encuentra el transporte civil supersónico fueron alejándose cada vez más. No es sólo una cuestión de capitalización, sino también de riesgo, expectativas de los mercados y plazos de rentabilización.

Para ser justos, lo cierto es que las dificultades a las que se enfrenta quien pretenda desarrollar un transporte comercial supersónico son varias, y complejas; si yo fuera uno de esos inversores, no creo que me metiese sin ponderar mucho la cuestión. Pero mucho. La primera de estas dificultades está, por supuesto, en los motores. Desarrollar un motor para velocidades supersónicas que sea ecológicamente sostenible y económicamente competitivo (resumiendo mucho: que sea de moderado mantenimiento, gaste poco combustible y así de paso contamine poco) representa un desafío formidable. Adicionalmente, el diseño de un motor supersónico varía notablemente con respecto al de uno subsónico, con lo que una parte sustancial de la experiencia existente para mejorar la eficiencia en motores de aviación civil no resulta aplicable.

Cabinas de pilotaje del Tu-144 (izda.) y el Concorde (dcha.)


No obstante, hay aproximaciones posibles. Una característica poco conocida de los motores supersónicos es que, aunque su consumo específico de combustible es mayor cuando operan a altas velocidades, en realidad son más eficientes que los motores subsónicos por kilómetro recorrido. Esto se debe a un hecho sencillo: sin tener en cuenta los demás condicionantes, podrían recorrer más distancia en menos tiempo, con lo que la cifra de litros por kilómetro debería ser mejor que en los subsónicos hasta bastante por encima de Mach 2. Dicho de una manera simplificada: aunque gastan más combustible por segundo, tienen que estar muchos menos segundos en el aire para completar el mismo viaje.

Sin embargo, en la práctica esto no ocurre así: las aeronaves supersónicas son enormemente tragonas en comparación con las subsónicas. El Concorde, por ejemplo, consumía hasta 166 mililitros de combustible por pasajero y kilómetro recorrido. Esta es una cifra sólo levemente superior a la de un jet privado subsónico de largo alcance como el G-550 (148 ml por pasajero y kilómetro), pero se halla a enorme distancia de los grandes jetliners intercontinentales: entre 26 y 44 ml, según las distintas fuentes, para modelos como el Airbus A330, el Boeing-747 o el Airbus A380. El abismo competitivo resulta, a todas luces, importante. Y sin embargo, el problema principal no está en los motores. El problema radica en lo que tienen que mover esos motores. Más técnicamente: en la aerodinámica general, en la resistencia aerodinámica en particular, en el rendimiento aerodinámico máximo (“lift-to-drag ratio”), el peso en vacío por pasajero, el coste extra de I+D y el coste de los materiales y procesos productivos especiales para la construcción del aparato, junto a otros asuntos menos técnicos pero también relevantes.

Los desafíos de construir un avión supersónico.

El comportamiento aerodinámico de una nave supersónica resulta radicalmente distinto al de un aparato subsónico. En todo objeto que se mueva por dentro del aire, la fuerza de resistencia aerodinámica (que se opone al avance del aparato) es directamente proporcional al coeficiente de resistencia aerodinámica Cd, a la densidad del aire y al cuadrado de la velocidad. Esto significa que en cuanto la velocidad aumenta, la resistencia aerodinámica aumenta mucho más, lo que tiene el efecto de frenar el aparato (y, con ello, reducir la sustentación). Como esto es una ley física inevitable, los diseñadores de aviones muy rápidos tienen que jugar con los otros dos factores: la densidad del aire y el coeficiente de resistencia aerodinámica. Es decir, hay que crear un avión que vuele lo más alto posible (para reducir la densidad del aire circundante) y que tenga un coeficiente de resistencia aerodinámica lo más bajo posible. Esto obliga a darle una forma muy determinada y unas características muy específicas, que limitan el resto del diseño.

Las fuerzas aerodinámicas básicas: peso, sustentación, empuje y resistencia. A velocidades supersónicas se reduce la sustentación y aumenta la resistencia, con lo que el empuje debe ser mucho mayor para mantener la altitud y velocidad.


Lamentablemente, cuando el aparato se aproxima a la velocidad del sonido, surge otro fenómeno: la resistencia de onda. Entre Mach 0.8 y Mach 1.2, el coeficiente de resistencia aerodinámica Cd llega a multiplicarse por cuatro. Después, a velocidades claramente supersónicas, esta resistencia de onda desaparece y Cd es ya sólo un 30% a 50% más elevado que durante el vuelo subsónico. Sin embargo, este paso por la región transónica obliga a diseñar la aeronave con la potencia motriz y las características aerodinámicas necesarias para vencerla, aunque ambas sólo se vayan a usar durante unos momentos: de lo contrario, nunca lograría superarla. Tal exigencia constriñe aún más el diseño del aparato y sus motores.

A velocidades supersónicas, el rendimiento aerodinámico (lift to drag ratio) cae muy significativamente y con él la sustentación generada por las alas. Típicamente, a Mach 2 se reduce a la mitad: el Concorde, por ejemplo, presentaba un rendimiento aerodinámico de 7,14 mientras que el Boeing 747 lo tiene de 17. Esto obliga a diseñar unas alas muy especiales, con características muy distintas a las alas corrientes en los aviones subsónicos, que se comportan peor durante el vuelo a baja velocidad (sobre todo, en los despegues y aterrizajes); y, al mismo tiempo, hay que dotar al aparato de mayor empuje para que logre mantener su velocidad y altitud cuando está supersónico. O sea: más limitaciones al diseño y más potencia (y consumo) en los motores. Además, debido a todas estas razones el alcance queda reducido.

El vuelo a esas velocidades produce otro problema adicional: un enorme incremento de temperatura en las superficies y bordes de ataque por rozamiento y debido a la compresión adiabática del aire frente a la aeronave. Cuando volaba a Mach 2, el pico del Concorde se ponía a 127 ºC y el borde de ataque de las alas, a unos 105 ºC. En este rango de temperaturas, algunos materiales comúnmente usados en aviación por su coste y conveniencia como el aluminio comienzan a perder su templado y debilitarse. No ocurre de inmediato, pero sí con el uso. Por encima de estas temperaturas, hay que recurrir necesariamente a otros metales como el titanio, más pesados y con un coste mucho mayor. Como el Concorde estaba hecho con duraluminio, usando aleaciones de acero al titanio únicamente en algunos puntos, su velocidad efectiva quedaba limitada a Mach 2.02. El Tu-144, equipado con componentes de titanio en todas las zonas críticas, llegó a alcanzar Mach 2.26. Una curiosidad bastante famosa es que, debido a estas temperaturas, el Concorde se alargaba por dilatación hasta veinticinco centímetros; cosa que también hay que tener en cuenta durante el diseño.

Temperaturas estructurales del Concorde a Mach 2.


Otra peculiaridad menos conocida es que el color predominantemente blanco del Concorde y el Tu-144 no obedecía a una razón caprichosa: era para evitar el sobrecalentamiento adicional de la estructura en unos 10 ºC. Es decir, la misma razón por la que las casas suelen ser blancas en las regiones cálidas. Los aviones supersónicos pintados de negro por razones militares (como el SR-71 Blackbird) lo hacen a cambio de pagar una penalización térmica.

Estos regímenes térmicos obligan a una refrigeración adicional del avión y sus sistemas. El Concorde lo hacía utilizando el combustible almacenado en los depósitos y el Tu-144 mediante un sistema específico. Además, fuerzan a proteger las áreas interiores frontales –como la cabina de mandos– contra el calor. Como consecuencia de todo esto, las aeronaves supersónicas exigen diseños más afilados y estrechos, motores más potentes, sistemas adicionales de refrigeración y otras peculiaridades de diseño, lo que en su conjunto eleva el peso en vacío por asiento, antes incluso de considerar la carga de combustible. Es decir: hay que mover más avión para desplazar a un pasajero. En el Concorde, el peso en vacío por asiento era de 655 kg y en el Tu-144, de 607 (lo que daba al avión soviético una mejor capacidad de carga). Pero en aviones subsónicos, esta masa por asiento es muy inferior: 341 kg para el Boeing 747-400, 296 para el Airbus A380 y apenas 220 para el Airbus A321-200. Esto es: para transportar a un pasajero en Concorde hay que mover casi el triple de avión que para hacerlo en un Airbus A321. Eso, de manera prácticamente automática, significa que el coste va a ser como mínimo tres veces más caro.

En la práctica, un billete en Concorde de ida y vuelta para el vuelo Londres-Nueva York a finales de los años ’90 venía a estar en torno a los diez mil dólares, aunque a veces había ofertas y promociones (y en otras ocasiones te clavaban algo más). Eso equivale a unos trece o catorce mil dólares de hoy. En estos momentos, British Airways cobra exactamente eso mismo por un billete de primera clase en Boeing 747. Air France pide más de diez mil euros por el mismo viaje desde París en la première: casi quince mil dólares. Y se venden, al menos algunos, a pesar de que ahora cada vuelo dure siete u ocho horas en vez de tres. (Como curiosidad, el vuelo I/V Moscú-Almá Atá en business –no hay imperial para esa ruta– cuesta hoy unos 1.300 euros.)


Torpedo-cohete ruso VA-111 Shkval. Provisto con un sistema de supercavitación, que genera una capa de burbujas de aire a su alrededor y lo convierte en una especie de "avión submarino", puede alcanzar más de 370 km/h bajo el agua. Un sistema análogo para su uso en el aire, posiblemente usando tecnologías magnetohidrodinámicas, convertiría a un avión o un misil en una "nave espacial aérea" capaz de volar a velocidades hipersónicas.

Las dos soluciones hipotéticas para liberarse radicalmente de un buen número de estos problemas son un nuevo tipo de motor y/o combustible junto a una nueva aproximación aerodinámica. En este segundo caso, hay diversos estudios en curso en torno a la magnetohidrodinámica (que podría producir en el aire un fenómeno análogo a la supercavitación utilizada en el agua por el torpedo-cohete VA-111 Shkval); entre las instituciones que estudian esta cuestión se encuentran el Centro Marshall de la NASA (Estados Unidos), MBDA-France (antes Aerospatiale Matra Missiles, Francia), el Instituto de Investigación de Sistemas Hipersónicos (San Petersburgo, Rusia) y el Instituto de Investigación de Hidrodinámica Aplicada (NII-PGM, Rusia).

En Rusia, además, existe un proyecto de testbed tecnológico llamado Ayaks (Ajax), dependiente del Instituto de Investigación de Sistemas Hipersónicos y construido por Leninets. Se cree que saben cómo crear el efecto de “supercavitación aérea”, mediante el uso de unos inyectores de spray catalítico sobre un sistema de generación de ondas termohidrodinámicas (¡yeah!), pero aún no han logrado solventar el problema de control de flujo del mismo. El aparato iría propulsado por un cohete o un estatorreactor scramjet y alcanzaría el rango de Mach 6 a 10 en la primera fase y de 12 a 20 en la segunda sin necesidad de abandonar la estratosfera. Como ocurriera con el Shkval, es muy probable que su primera aplicación sea misilística.

El proyecto francés se llama PROMETHEE, y su sistema de propulsión PREPHA (un ramjet avanzado de modo doble y geometría variable). Está a cargo de MBDA-France (Chatillôn) y ONERA (Palaiseau), con fondos del Ministerio de Defensa. Públicamente, empezaron en 1999 y muy probablemente tengan estrechas relaciones con el proyecto ruso: se sabe que utilizan el concepto Ayaks. Su pimer objetivo es el Mach 12. Pratt&Whitney (EEUU) y Snecma (Francia) colaboran en tecnología de materiales. La fase de propulsión está muy avanzada, pero no se sabe cómo andan en el control de flujo magnetohidrodinámico que parece traer locos a los rusos (si es que no dependen de ellos para resolverlo).

En cuanto a los norteamericanos, es posible que se haya estado trabajando en un concepto del que el X-41, el X-43, el X-51 y el recientemente fallido HTV serían prototipos tecnológicos diseñados para operar a velocidades entre Mach 6 y 20. Su sistema de propulsión estaría constituido por diversos tipos de scramjet o cohetes y no parece utilizar el efecto magnetohidrodinámico inducido activamente del Ayaks o el PROMETHEE, sino aprovechar eficientemente el efecto que se produce de manera natural a velocidades superiores a Mach 7. Esto limitaría el concepto tecnológico a velocidades máximas en torno a Mach 15 o lo obligaría a permanecer fuera de la estratosfera. Los australianos tienen un proyecto llamado HyShot, conceptualmente similar al norteamericano. Vamos, que aproximaciones aerodinámicas revolucionarias no faltan… aunque, de momento, todas ellas están orientadas al uso militar.

Otro problema notorio de las aeronaves supersónicas (e hipersónicas, vaya) es el estampido sónico, que obligaba al Concorde a acelerar únicamente cuando ya se hallaba sobre el océano (con la consiguiente ralentización de las operaciones y también su encarecimiento, pues como ya hemos dicho los aviones supersónicos vuelan poco eficientemente por debajo de la velocidad del sonido). Este es asunto de mucha enjundia para las organizaciones ciudadanas y ecologistas, lo que se traduce en fuertes presiones políticas y termina convirtiéndose en otra cuestión técnica a resolver. La NASA ya ha logrado reducir este problema a la mitad, y se sabe que ciertas formas del fuselaje producen ondas sonoras que tienden a cancelarse entre sí, con el resultado de ocasionar un estampido mucho más leve o ninguno en absoluto. Finalmente, cabe considerar que los aviones supersónicos –por su propia sofisticación y singularidad tecnológica– son más costosos en general de desarrollar, construir, mantener y operar.

¿Y entonces…?

Seguramente, tras leer todo este post estarás pensando –como he hecho yo muchas veces– que, eh, bueno… pues después de todo, esas empresas y estados tienen buenos motivos para no invertir en una segunda generación de transporte comercial supersónico. Ya te lo dije más arriba: así es, los tienen. Bajo la lógica económica actual, yo mismo pondría de patitas en la calle a quien se le ocurriera meter mi dinero en aventuras semejantes.

El problema es que, bajo esa lógica económica, nada tiene sentido a menos que proporcione un beneficio a corto plazo y venza los miedos de los siempre temerosos inversores. Si se hubiera trabajado pensando en la cuenta de resultados del próximo trimestre, seguiríamos anclados a principios del siglo XX y aparatos como un TAC serían pura ciencia-ficción. A ver si nos entendemos: yo no estoy proponiendo meter dinero público o privado a lo loco en la primera chaladura que se nos pase por la cabeza. Pero el extremo contrario, que es donde estamos ahora y además con visos de profundizarse, nos estanca. Si todo ha de ser rentable a pocos meses o años vista y razonablemente seguro, mientras al mismo tiempo se siguen recortando los presupuestos públicos en I+D, entonces los avances revolucionarios nos están vedados porque éstos son intrínsecamente impredecibles, inseguros y arriesgados. Y, a menudo, caros.



Diseño conjunto de Sukhoi y Gulfstream para un jet privado supersónico totalmente exclusivo: el S-21.

Estoy tratando de imaginarme ahora mismo a Enrico Fermi y Léo Szilárd intentando convencer a un banco de inversiones de que es posible crear una cosa llamada reactor nuclear que producirá grandes cantidades de energía y puede que algún día llegue a ser rentable (cosa que sigue siendo dudosa). O a Sergei Korolev explicando a una empresa de capital-riesgo que necesita una montaña de dinero para –no se rían, señores, por favor– poner a un hombre en el espacio, mandar varias naves a Venus y quizás –en algún indeterminado futuro– lograr que todo eso tenga algún sentido económico. Tampoco parece muy probable que los inversores hagan cola en la puerta para financiar Grandes Observatorios, aceleradores de partículas, reactores de fusión, estaciones espaciales o en general ninguna de las ciencias y desarrollos de donde luego emergen las tecnologías que las empresas usarán. Ni tampoco aviones supersónicos de segunda generación. Y sin embargo, si no fuera por todo esto –que fue sentando y decantando las bases de la tecnología actual– a buenas horas estarías tú ahora leyéndome por Internet o gozando de medicina avanzada en los hospitales, entre otras mil cosas. La verdad, cada día tengo más la sensación de que este siglo XXI vive de las rentas del siglo XX… y que estas rentas se están agotando a toda velocidad.

Pero no será por falta de propuestas. En el tema que nos ocupa, ahí están –o estuvieron– prototipos experimentales como el Sukhoi-Gulfstream S-21, el Tupolev Tu-444, el Aerion SBJ o el QSST; todos ellos concebidos como jets privados (más que nada porque algunas personas muy ricas podrían estar dispuestas a pagar por esta clase extraordinaria de exclusividad) pero también con una función evidente como bancos de pruebas tecnológicos. Con dinero público, la NASA mantiene un pequeño programa de investigación llamado Quiet Spike, dirigido a reducir el estampido sónico; y antes de eso, mantuvo otro que equipaba Tu-144, pero fue cancelado en 1999. Hay incluso algunos proyectos más ambiciosos como el hipersónico A2 de Reaction Engines.

Aquí ya no estamos hablando de construir naves interplanetarias tripuladas ni nada por el estilo, sino de actualizar un tipo más rápido de avión que ya poseíamos hace cuarenta puñeteros años. Tampoco tengo claro que, en un mundo cada vez más globalizado, no exista un mercado (a medio plazo, eso sí) para reducir la duración de todos esos larguísimos viajes Londres-Nueva York, Nueva York-Tokyo, Los Angeles-Seúl, San Francisco-Tokio o Hongkong-Seúl, por no mencionar cosas como Nueva York-Singapur (el famoso vuelo SQ-21, actualmente operado mediante Airbus A340), Dubai-Los Angeles, Atlanta-Johannesburgo o Vancouver-Sydney. Estas son, respectivamente, algunas de las rutas intercontinentales más transitadas y más largas del mundo; que podrían ser mejoradas y abreviadas mediante una nueva generación de aviones supersónicos con alcance extendido (¡hasta haciendo escalas sería mucho más rápido!). ¿Realmente no hay público al que le vendría bien hacer Nueva York-Singapur en menos de ocho horas, en vez de las casi diecinueve actuales? (Sobre todo si tenemos en cuenta que este vuelo, por ejemplo, ya es íntegramente premium: sólo hay business, no dispone de asientos en clase económica). El chiste de todo esto es que aquí ni siquiera se propone una aventura revolucionaria, sino meramente actualizar, rentabilizar y hacer económica y ecológicamente sostenible algo que ya existe hace décadas, que operó durante largos años y que se usa con normalidad en el ámbito militar. Pues ni por esas, oiga.

Es que el mantra en el mundo de la aviación, ahora mismo, es low cost. Pero low cost a saco matraco, al centimeo mezquino y navajero. Desde bastante antes de que llegara la crisis, se viene diciendo que el público lo que quiere es pagar menos aunque vuele más incómodo, más despacio y entre aeropuertos remotos con nombres que dan risa como Londres-Stansted (que podría llamarse Cambridge-Sur: está más cerca), París-Disney (más exactamente, Reims-Sur o Troyes-Norte), Fráncfort-Hahn (que también podríamos denominar Luxemburgo-Este) y el cachondísimo Düsseldorf-Weeze (más bien Eindhoven-Weeze o Arnhem-Weeze, ¿por qué no?). Si tal cosa es cierta aunque sea sin llegar a esos extremos, y según algunos números parece que sí, desde luego no queda espacio ninguno para fomentar avances revolucionarios desde el ámbito privado. (Por cierto: en último término, ¿hasta dónde se puede seguir abaratando costes?)

Otra afirmación común es que los trenes de alta velocidad asfixian al sector aéreo. Pero esto sólo vale para las rutas regionales, por debajo de quinientos o como mucho mil kilómetros (y, por cierto, demuestra que la gente paga dinero por viajar más rápido mientras la diferencia no sea desmesurada). Las propuestas de transporte supersónico se ven tan afectadas por estos ferrocarriles como el superjumbo A380: nada en absoluto. Estos tipos de aeronaves son para largas distancias, no para vuelo regional.

Finalmente, podríamos citar como desmotivador definitivo la crisis generalizada del sector aéreo, que no está para aventuras de ninguna clase. Si el colapso de Pan Am en 1991 y la lenta agonía de TWA entre 1992 y 2001 ya representaron un cambio radical de modelo (mis lectores con alguna veteranía recordarán que esas compañías eran enormes, “las alas de los Estados Unidos”), a lo largo de la última década han quebrado aerolíneas emblemáticas a porrillo: Sabena (2001); Swissair (conocida como “el banco volante” por su tradicional fortaleza financiera, en 2002); United Airlines (2002, fusionada posterioremente con Continental); US Airways (2004, fusionada con la también quebrada America West); Alitalia (2009); Mexicana de Aviación (2010); Japan Airlines (2010) o la compleja doble bancarrota y fusión de Northwest y Delta (2005-2010). Todo esto sin mencionar a cientos de compañías pequeñas y medianas. El mal no acaba ahí: actualmente, varios monstruos de la industria aérea anuncian grandes pérdidas. Por ejemplo: British Airways (casi 13.000 millones de euros de pérdidas en 2009-2010), Air France-KLM (1.550 millones de euros) o Delta (1.240 millones de dólares).

Más allá de la crisis económica occidental, los factores que afectan a esta crisis de la industria aérea son complejos y profundos. Muchas veces se achaca la culpa a los atentados del 11-S, pero eso es una simpleza: tuvo su influencia, y su influencia ya pasó. Los problemas de este sector vienen de antes y se han ido ahondando con el paso de los años, en forma de ciclos de expansión y contracción que se remontan a los inicios de la desregulación.

El incremento de los precios del combustible a partir de la crisis de 1973 y sobre todo en el periodo 2003-2008 suele citarse como el elemento de mayor importancia. Veámoslo. En 1970, un barril de petróleo costaba 3,18 dólares, que en dólares ajustados a la inflación para 2010 equivale a $8,43. Ayer sábado, el Brent Spot se cotizaba a $82,35. Bien, ciertamente es un incremento enorme: unas diez veces más. El incremento del precio del petróleo no es algo que vaya a detenerse con facilidad, por lo que cabría plantearse el problema desde el otro lado: desarrollar sistemas de propulsión que consuman mucho menos. Sin embargo, el consumo específico de los motores de aviación apenas ha descendido en estos treinta años. Uno de los primeros turboventiladores de alto índice de derivación, el CF6-6D fabricado en 1971 por General Electric para el DC-10 original, tenía un consumo específico de 0,624 lb/lbf h en vuelo de crucero . Del mismo fabricante, el GE90-85B de 1995 para el Boeing 777 presenta un consumo específico en crucero de 0,52 lb/lbf h: apenas un 20% mejor, casi un cuarto de siglo después. Motores de reciente desarrollo como el GEnx o el Trent 1000 aseguran mejorar el consumo en “un 15%” sobre la generación precedente. Evidentemente, ninguna de estas cifras se acerca ni remotamente a compensar el incremento de los costes de combustible en este mismo periodo. La industria aérea necesita con urgencia un avance revolucionario en sistemas de propulsión si quiere regresar a algo siquiera remotamente parecido a los “buenos tiempos”.

Ya dijimos que existe otra forma de combatir contra estos costes del combustible: las mejoras aerodinámicas. Como vimos más arriba, cuanto mejor sea la aerodinámica de una aeronave, menor es su resistencia al avance y menor será su consumo total. Por ejemplo: determinadas formas de las wingtips (esas aletitas que hay en la punta de las alas) reducen el consumo total entre en un 3,5 y un 5,5%. Ciertas modificaciones en las góndolas de los motores hacen lo propio, y así con todo. Sin embargo, de nuevo, las cifras son enormemente inferiores a lo necesario para compensar el incremento de los precios del combustible. Sin avances revolucionarios en aerodinámica, como los explicados para el desarrollo del vuelo hipersónico u otros análogos, la industria aérea tampoco hallará ninguna forma de minimizar el impacto de estos precios.

El conjunto de los costes operacionales, y no sólo el del combustible, se mencionan como otros factores coadyuvantes a la crisis del sector aeronáutico. Sin embargo, estos costes ya están extremadamente estirados a la baja, con las conocidas consecuencias laborales y sociales. Preguntaba arriba cuánto más se pueden rebajar. El de Ryanair habla de quitar al copiloto y no hace mucho sugerían la posibilidad de embutir pasajeros de pie como en un autobús en hora punta. Sin llegar a estos extremos, toda la industria del aire trabaja en un estrechísimo margen que cualquier novedad desafortunada puede tirar por tierra. Para disponer de márgenes más amplios, se necesitan más avances revolucionarios en automatización, economía de materiales y nuevos materiales para la construcción de piezas y repuestos, mil cosas.

En el contexto presente de crisis internacional, con la consiguiente reducción de la demanda (especialmente de la demanda premium) y una fuerte presión para bajar precios, las únicas soluciones que se proponen a las compañías aéreas son la reducción de costes y la reducción de capacidad. Es decir: hacerse más pequeñas y baratas, menos potentes. Esto es muy realista en la lógica económica presente, pero también un circulo vicioso. En ausencia de milagritos del tipo de un repentino periodo de expansión económica unido a un descenso radical del precio de los combustibles (una combinación extremadamente improbable: si la economía se recuperara con fuerza, es de suponer que el precio de los combustibles lo haría también), se trata de una senda que conduce a la decadencia.


Proyecto de avión hipersónico A2 de Reaction Engines.


Y sin embargo, todas estas cosas –avances radicales en la propulsión, en la aerodinámica, en materiales, en procesos fabriles, en mantenimiento, en automatización, en tecnologías aeroportuarias y de control de tráfico aéreo– son exactamente las mismas cosas que permitirían una segunda generación de aviones supersónicos. La posibilidad de construir nuevos aviones supersónicos y el despegue del sector aeronáutico más allá del estancamiento presente constituyen dos caras de la misma moneda, con los evidentes beneficios –también– para la clientela. Tiendo a pensar que un programa Apolo para la creación de nuevas aeronaves comerciales más rápidas que el sonido constituye una de las pocas posibilidades que permitirían el desarrollo rápido de estas tecnologías aunque fracasara.

Sin un revulsivo de ese o similar alcance, algo parecido al surgimiento del reactor, me cuesta imaginarme a la aviación saliendo de su estancamiento actual. Esta es la situación exacta en que o una industria encuentra la manera de reinventarse a sí misma, o está condenada a languidecer lentamente entre miserias y estrecheces cada vez mayores hasta su reducción a unos nichos irrelevantes. O el sector aeronáutico halla maneras de desarrollar tecnologías radicalmente nuevas con recursos públicos o privados como hacía en el pasado, que le permitan recuperar un amplio margen de acción, o ahí se queda y ya nunca volverá a despegar por mucho coste y capacidad que reduzca. Así, al menos, opino yo; el tiempo me dará o me quitará la razón.

Fuente